Showing posts with label philosophy of science. Show all posts
Showing posts with label philosophy of science. Show all posts

Monday, May 30, 2011

Philosophy of social science today


A sign of arrival for a sub-discipline is the appearance of a handbook for the field. By that criterion, the philosophy of social science has passed an important threshold with the appearance of Ian Jarvie and Jesus Zamora-Bonilla's SAGE Handbook of the Philosophy of Social Sciences. The 750-page volume offers 37 main articles, as well as an extensive reflective introduction by Ian Jarvie and an epilogue by Jesus Zamora-Bonilla. A majority of the contributors are European, confirming an impression that the most active research networks in this field are currently in Western Europe. Germany and the Scandinavian countries are particularly well represented.

Ian Jarvie's extensive introduction does a good job of setting the stage for the volume. He is in a unique position to offer this perspective, having served as editor of the key journal Philosophy of the Social Sciences for many years. He begins by noting the heterogeneity of the field:
As a set of problems, the philosophy of the social sciences is wide-ranging, untidy, inter-disciplinary and constantly being reconfigured in response to new problems thrown up by developments in the social sciences; in short, disorderly. (1)
The orientation to the philosophy of social science represented in this volume is largely grounded in the analytic philosophy tradition. By this I mean an emphasis on rationality, an interest in generalizations and laws, a commitment to empirical methods of inquiry, and an over-arching preference for conceptual clarity. (Paul Roth describes the analytic approach in his contribution to the volume; 103ff.) But David Teira also offers an interesting contribution on "Continental Philosophies of the Social Sciences." He begins the article by writing,
In my view, there is no such thing as a continental philosophy of the social sciences. There is, at least, no consensual definition of what is precisely continental in any philosophical approach. (81)
Among these approaches he highlights Marxist, phenomenological and Foucauldian philosophies and theories of the social sciences. His finding is one that I agree with -- that one of the particularly valuable aspects of the continental traditions is the fact that thinkers in this tradition have offered large, insightful conceptual schemes for thinking about social life -- whether historical materialism, ethnomethodology, or the rhetoric of power. He writes, "I guess that if continental philosophies seem attractive to many social scientists, it is because they offer the prospect of a somewhat radical reconstruction of current research practices" (96).

Particularly interesting for me were contributions by Alban Bouvier ("Individualism, Collective Agency and The "Micro-Macro Relation"), Daniel Steel ("Causality, Causal Models, and Social Mechanisms"), Joan de Marti and Yves Zenou ("Social Networks"), Peter Hedstrom and Petri Ylikoski ("Analytical Sociology"), Chris Mantzavinos ("Institutions"), and Jeroen Van Bouwel and Erik Weber ("Explanation in the Social Sciences").

What is particularly valuable in this collection is the fact that most of the essays are not dogmatic in their adherence to a "school" of philosophical thought. Instead, they get down to the serious business of understanding the social world, and understanding what is involved in achieving a scientific understanding of that world. Chris Mantzavinos's essay, "Institutions," is a good example of this intellectual pragmatism. His contribution is a careful study of the new institutionalism and the variety of theoretical challenges that the concept of an institution raises. The essay is very well grounded in the current sociology and political science literatures on institutions, and it goes on to make substantively interesting points about these debates. "Only a theory of institutions that increases our information about the structure of social reality can provide us with the means of reorienting this reality in a direction that we find desirable" (408-9).

Many of the contributors -- probably the majority -- have taken seriously what I think is a particularly fundamental requirement for productive work in the philosophy of an area of science. This is the need for the philosopher to take up the particular theories and controversies of some current research in the social sciences as a framework and stimulus to their philosophical analysis. The philosopher needs to gain a significant level of expertise in a particular field of social science if his or her work is likely to find traction with conceptual issues that really matter. The topics for the philosophy of social science should not derive from apriori speculation about society; instead, they should be selected on the basis of careful engagement with serious empirical and theoretical attempts to explain the social world.

This is the kind of book that would benefit from a simultaneous digital edition. An affordable Kindle edition would help; but more radically, an online, hypertexted and cross-linked version would be fantastic. It would be fascinating to see a concept map linking the articles by theme or keyword; it would be illuminating to see some analysis of the patterns of citation across the articles in the volume; and it would be great for the reader to be able to click to some of the references directly. (Jarvie provides something like a map of themes in his tables representing "Principal Problems in Philosophy of the Social Sciences" and "Problematics in 14 Selected Anthologies"; 7-8.)



Friday, April 16, 2010

Feyerabend as artisanal scientist


I've generally found Paul Feyerabend's position on science to be a bit too extreme. Here is one provocative statement in the analytical index of Against Method:
Thus science is much closer to myth than a scientific philosophy is prepared to admit. It is one of the any forms of thought that have been developed by man, and not necessarily the best. It is conspicuous, noisy, and impudent, but it is inherently superior only for those who have already decided in favour of a certain ideology, or who have accepted it without having ever examined its advantages and its limits. And as the accepting and rejecting of ideologies should be left to the individual it follows that the separation of state and church must be supplemented by the separation of state and science, that most recent, most aggressive, and most dogmatic religious institution. Such a separation may be our only chance to achieve a humanity we are capable of, but have never fully realised.
Fundamentally my objection is that Feyerabend seems to leave no room at all for rationality in science: no scientific method, no grip for observation, and no force to scientific reasoning. A cartoon takeaway from his work is a slogan: science is just another language game, a rhetorical system, with no claim to rational force based on empirical study and reasoning.  Feyerabend seems to be the ultimate voice for the idea of relativism in knowledge systems -- much as Klamer and McCloskey seemed to argue with regard to economic theory in The Consequences of Economic Rhetoric.

This isn't a baseless misreading of Feyerabend. In fact, it isn't a bad paraphrase of Against Method. But it isn't the whole story either.  And at bottom, I don't think it is accurate to say that Feyerabend rejects the idea of scientific rationality.  Rather, he rejects one common interpretation of that notion: the view that scientific rationality can be reduced to a set of universal canons of investigation and justification, and that there is a neutral and universal set of standards of inference that decisively guide choice of scientific theories and hypotheses.  So I think it is better to understand Feyerabend as presenting an argument against a certain view in the philosophy of science rather than against science itself.

Instead, I now want to understand Feyerabend as holding something like this: that there is "reasoning" in scientific research, and this reasoning has a degree of rational credibility.  However, the reasoning that scientists do is always contextual and skilled, rather than universal and mechanical.  And it doesn't result in proofs and demonstrations, but rather a preponderance of reasons favoring one interpretation rather than another.  (Significantly, this approach to scientific justification sounds a bit like the view argued about sociological theories in an earlier posting.)

Here are a few reasons for thinking that Feyerabend endorses some notion of scientific rationality.

First, Feyerabend is a philosopher and historian of science who himself demonstrates a great deal of respect for empirical and historical detail.  The facts matter to Feyerabend, in his interpretation of the history of science.  He establishes his negative case with painstaking attention to the details of the history of science -- Newton, optics, quantum mechanics. This is itself a kind of empirical reasoning about the actual intellectual practices of working scientists. But if Feyerabend were genuinely skeptical of the enterprise of offering evidence in favor of claims, this work would be pointless.

Second, his own exposition of several scientific debates demonstrates a realist's commitment to the issues at stake. Take his discussion of the micro-mechanisms of reflection and light "rays". If there were in principle no way of evaluating alternative theories of these mechanisms, it would be pointless to consider the question. But actually, Feyerabend seems to reason on the assumption that one theory is better than another, given the preponderance of reasons provided by macro-observations and mathematical-physical specification of the hypotheses.

Third, he takes a moderate view on the relation between empirical observation and scientific theory in "How to Be a Good Empiricist":
The final reply to the question put in the title is therefore as follows. A good empiricist will not rest content with the theory that is in the centre of attention and with those tests of the theory which can be carried out in a direct manner. Knowing that the most fundamental and the most general criticism is the criticism produced with the help of alternatives, he will try to invent such alternatives. (102)
This passage is "moderate" in a specific sense: it doesn't give absolute priority to a given range of empirical facts; but neither does it dismiss the conditional epistemic weight of a body of observation.

So as a historian of science, Feyerabend seems to have no hesitation himself to engage in empirical reasoning and persuading, and he seems to grant a degree of locally compelling reasoning in the context of specific physical disputes.  And he appears to presuppose a degree of epistemic importance -- always contestable -- for a body of scientific observation and discovery.

What he seems most antagonistic to is the positivistic idea of a universal scientific method -- a set of formally specified rules that guide research and the evaluation of theories. Here is how he puts the point in "On the Limited Validity of Methodological Rules" (collected in Knowledge, Science and Relativism). 
It is indubitable that the application of clear, well-defined, and above all 'rational' rules occasionally leads to results. A vast number of discoveries owe their existence to the systematic procedures of their discoverers. But from that, it does not follow that there are rules which must be obeyed for every cognitive act and every scientific investigation. On the contrary, it is totally improbable that there is such a system of rules, such a logic of scientific discovery, which permeates all reasoning without obstructing it in any way. The world in which we live is very complex. Its laws do not lay open to us, rather they present themselves in diverse disguises (astronomy, atomic physics, theology, psychology, physiology, and the like). Countless prejudices find their way into every scientific action, making them possible in the first place. It is thus to be expected that every rule, even the most 'fundamental', will only be successful in a limited domain, and that the forced application of the rule outside of its domain must obstruct research and perhaps even bring it to stagnation. This will be illustrated by the following examples. (138)
It is the attainability of a universal, formal philosophy of science that irritates him. Instead, he seems to basically be advocating for a limited and conditioned form of local rationality -- not a set of universal maxims but a set of variable but locally justifiable practices. The scientist is an artisan rather than a machinist.  Here is a passage from the concluding chapter of Against Method:
The idea that science can, and should, be run according to fixed and universal rules, is both unrealistic and pernicious. It is unrealistic, for it takes too simple a view of the talents of man and of the circumstances which encourage, or cause, their development. And it is pernicious, for the attempt to enforce the rules is bound to increase our professional qualifications at the expense of our humanity. In addition, the idea is detrimental to science, for it neglects the complex physical and historical conditions which influence scientific change. It makes our science less adaptable and more dogmatic: every methodological rule is associated with cosmological assumptions, so that using the rule we take it for granted that the assumptions are correct. Naive falsificationism takes it for granted that the laws of nature are manifest and not hidden beneath disturbances of considerable magnitude. Empiricism takes it for granted that sense experience is a better mirror of the world than pure thought. Praise of argument takes it for granted that the artifices of Reason give better results than the unchecked play of our emotions. Such assumptions may be perfectly plausible and even true. Still, one should occasionally put them to a test. Putting them to a test means that we stop using the methodology associated with them, start doing science in a different way and see what happens. Case studies such as those reported in the preceding chapters show that such tests occur all the time, and that they speak against the universal validity of any rule. All methodologies have their limitations and the only 'rule' that survives is 'anything goes'.
His most basic conclusion is epistemic anarchism, expressed in the "anything goes" slogan, but without the apparent relativism suggested by the phrase: there is no "organon," no "inductive logic," and no "Scientific Method" that guides the creation and validation of science.  But scientists do often succeed in learning and defending important truths about nature nonetheless.

(Here is an online version of the analytical contents and concluding chapter of Against Method.  And here is a link to an article by John Preston on Feyerabend in the Stanford Encyclopedia of Philosophy.)

Thursday, February 18, 2010

Scientific realism for the social sciences


What is involved in taking a realist approach to social science knowledge? Most generally, realism involves the view that at least some of the assertions of a field of knowledge make true statements about the properties of unobservable things, processes, and states in the domain of study.  Several important philosophers of science have taken up this issue in the past three decades, including Rom Harre (Causal Powers: Theory of Natural Necessity) and Roy Bhaskar (A Realist Theory of Science).  Peter Manicas's recent book, A Realist Philosophy of Social Science: Explanation and Understanding, is a useful step forward within this tradition. Here is how he formulates the perspective of scientific realism:
The real goal of science ... is understanding of the processes of nature. Once these are understood, all sorts of phenomena can be made intelligible, comprehensible, unsurprising. (14)
Explanation ... requires that there is a "real connection," a generative nexus that produced or brought about the event (or pattern) to be explained. (20)
So realism has to do with discovering underlying processes that give rise to observable phenomena. And causal mechanisms are precisely the sorts of underlying processes that are at issue.  Here is how Manicas summarizes his position:
Theory provides representations of the generative mechanisms,including hypotheses regarding ontology, for example, that there are atoms, and hypotheses regarding causal processes, for example, that atoms form molecules in accordance with principles of binding. We noted also that a regression to more fundamental elements and processes also became possible. So quantum theory offers generative mechanisms of processes in molecular chemistry. Typically, for any process, there will be at least one mechanism operating, although for such complex processes as organic growth there will be many mechanisms at work. Theories that represent generative mechanisms give us understanding. We make exactly this move as regards understanding in the social sciences, except that, of course, the mechanisms are social. (75)
Manicas's illustrations of causal powers and mechanisms are most often drawn from the natural world. But what basis do we have for thinking that social entities have stable causal properties -- let alone a profile of causal powers that are roughly invariant across instances?

Consider an example, Theda Skocpol's definition of social revolutions:
Social revolutions are rapid, basic transformations of socio-economic and political institutions, and--as Lenin so vividly reminds us--social revolutions are accompanied and in part effectuated through class upheavals from below. It is this combination of thorough-going structural transformation and massive class upheavals that sets social revolutions apart from coups, rebellions, and even political revolutions and national independence movements. (link)
Realism invites us to consider whether "social revolutions" really have the characteristics she attributes to them.  Do social revolutions have an underlying nature distinctive causal powers that might be identified by a social theory?  More generally, what basis do we have for thinking that certain types of social entities possess a specific set of causal powers?

The answer seems to be, very little.  Types of social entities -- revolutions, states, riots, market economies, fascist movements -- are heterogeneous groupings of concrete social formations rather than "kinds" along the lines of "metal" or "gene".  Each of the extended historical events that Skocpol offers as instances of the category "social revolution" is unique and contingent in a variety of ways; these historical episodes do not share a common causal nature.  It is legitimate to group them together under the term "social revolution"; but it is essential that we not commit the error of reification and imagine that the group so constituted must share a fundamental causal nature in common.  So the most direct application of this kind of realism to the social sciences seems somewhat unpromising.

But we are on firmer ground when we consider a particularly central type of assertion in the social sciences: claims about underlying causal mechanisms or social processes.  So what does it mean to assert that a given social mechanism "really exists"? 

Take the idea of "stereotype threat" as one of the mechanisms underlying an important social fact, the racial and gender differences in performance that have been observed on some standardized tests (Claude Steele and Joshua Aronson, "Stereotype Threat and the Intellectual Test Performance of African Americans" (link); see also this article in the Atlantic).  We can summarize the theory along these lines: "Prevalent assumptions about the characteristics and performance of various salient social groups can depress (or enhance) the performance of members of those groups on intellectual and physical tasks.  This provides a partial explanation of the observed differentials in performance."  This mechanism is hypothesized as one of the ways in which performance by individuals in various groups is socially influenced in such a way as to lead to differential performance across groups.  It postulates a set of internal psychological mechanisms surrounding cognition and problem-solving, all related to the individual's self-ascribed social identity.

The realism question is this: do these hypothetical psychological effects actually occur in real human individuals?  And do these differences in cognitive processes lead to differential performance across groups?  If we confirm both these points, then we can conclude that "stereotype threat is a real social psychological mechanism."  The microfoundations of this mechanism reside in two locations: the concrete cognitive processes of the individuals, and the social behaviors of persons around these individuals, giving subtle cues about stereotypes that are discerned by the test-taker.

So we might say that we can conclude that a postulated social mechanism "really" exists if we are able to provide piecemeal empirical and theoretical arguments demonstrating that the terms of the mechanism hypothesis are confirmed in the actions and behavior of agents; and that these patterns of action do in fact typically lead to the sorts of outcomes postulated.  In other words, we need to look at our hypotheses about social mechanisms as small, somewhat separable theories that need separate empirical, historical, and theoretical evaluation.  And when we are successful in providing convincing support for these mechanism-theories, we are also justified in concluding that the postulated mechanism really exists.  The social world really embodies stereotype threat if individuals are really affected in their cognitive performances by the sorts of subtle behavioral cues mentioned by the theory, in roughly the ways stipulated by the theory.  And we will feel most confident in this assertion if we also find new areas of behavior where this mechanism also appears to be at work.

This approach has an important implication about social ontology.  The reality of a social mechanism is dependent on facts about agents, their characteristics of agency, and the environment of social relationships within which they act.  So there is a close intellectual relationship between the ontology of methodological localism and realism about causal mechanisms.

(The smokestack image above illustrates a different kind of social mechanism -- the workings of externalities in a market economy, creating pollution by dumping public harms to save private costs.)

Thursday, December 17, 2009

Merton's sociology of science



The organized study of "science" as an epistemic practice and a knowledge product has taken at least three major forms in the past century: the philosophy of science, the history of science, and the sociology of science.  Philosophers have been primarily interested in the logic of scientific inquiry and the rational force of scientific knowledge.  Historians have been interested in the circumstances, both external and internal, through which important periods of the growth of scientific knowledge have occurred -- the Newtonian revolution, the Darwinian revolution, the "discovery" of cold fusion (above).  And sociologists have been interested in examining the norms and organizations through which "science" is practiced -- how young scientists are trained, how collaboration and competition work within a scientific discipline or a laboratory, how results are assessed and communicated.

And because the intellectual frameworks within which philosophers, historians, and sociologists have been educated differ substantially, these meta-disciplines of the study of science are significantly different as well.  The philosophers are largely interested in the quality of the product -- the rational force of a given body of scientific knowledge.  The historians are interested in the contingencies of development of a given field.  And the sociologists are interested in the social processes that lead to the creation of a body of scientific knowledge; they are inclined to "bracket" the epistemic standing or truth-value of the theories and hypotheses that a tradition has produced.

Robert Merton was one of the giants of American sociology.  One of his core contributions had to do with his efforts to define the subject matter and methodology of the sociology of science.  A volume of Merton's essays from the 1930s through 1960s on the sociology of science appeared in 1971, The Sociology of Science: Theoretical and Empirical Investigations, and these essays are worth re-reading today.  Here are some of Merton's formulations of the task of the sociology of science in "The Neglect of the Sociology of Science" (1952):
Numerous works ... have variously dealt with one or another part of the subject [of the sociology of science].  But these ... have not examined the linkage between science and social structure by means of a conceptual framework that has proved effective in other branches of sociology. (210)
Among current introductory textbooks in sociology ... all deal at length with the institutions of family, state, and economy, many with the institution of religion, but very few indeed with science as a major institution in modern society. (211)
Unlike the pattern in solidly established disciplines, in the sociology of science, facts are typically divorced from systematic theory.  Empirical observation and hypothesis do not provide mutual assistance.  Not having that direct bearing on a body of theory which makes for cumulative knowledge, the empirical studies that have been made, from time to time, by natural scientists have resulted in a thin scattering of unconnected findings rather than a chain of closely linked findings. (212-13)
So the goal of the sociology of science is to examine the linkage between science and social structure using the "conceptual frameworks" of sociology.  The sociology of science needs to be based on empirical observation -- i.e. it cannot be a purely conceptual discipline.  But it must possess an appropriate framework of sociological theory within the context of which empirical observations of scientific practice can be explained.

Several ideas were particularly important in Merton's efforts to conceptualize the processes of science:
  • the importance of discovering the norms that underlay the research and thinking of scientists in a given field (the ethos of science); ("the emotionally toned complex of rules, prescriptions, mores, beliefs, values and presuppositions that are held to be binding upon the scientist")
  • the internal social structure of various scientific disciplines (training, communication, information flow, evaluation)
  • the incentives that exist within the scientific disciplines that constitute the driving force for scientists to aggressively pursue publishable results; the reward system.  How do the imperatives of the ethos and the institutions of science come together to determine the patterns of behavior of the individual working scientist?  
One of Merton's key methodological contributions was the idea that it was possible to observe and measure the institutions of science through careful empirical examination of the biographies, journals, and other objective markers of scientific activity. (This is what he refers to as the conceptual framework of sociology.)  He repeatedly attempts to quantify and measure the activities of science -- publication rates, inventions, numbers of scientists in a field, and so forth.  For example, in "Changing Foci of Interest in the Sciences and Technology" (1938) he attempts to estimate the pattern of shifting scientific interest in England over the period of 1665-1702 by counting the numbers of articles to be published in various areas of science (tables 3-4). He finds that the physical and formal sciences fall in frequency during this time period, while the life sciences rise significantly (201).  How should we explain this shift in the interests of the scientific community?  Merton advocates a sociological cause.  Referring back to Rickert and Weber, he argues that this shift is likely to be linked to the broader societal interests of the time period:
Scientists often choose problems for investigation that are vitally linked with major values and interests of the time.  Much of this study will examine some of the extra-scientific elements which significantly influenced, if they did not wholly determine, the foci of scientific interest. (203)
Another of Merton's key ideas is the role of the reward system of science, which he takes to be the motor of scientific change:
Like other institutions, the institution of science has developed an elaborate system for allocating rewards to those who variously live up to its norms.... The evolution of this system has been the work of centuries, and it will of course never be finished.  (297)
And he finds that this reward system gives great weight to originality and priority -- which leads to the recurring phenomena of priority disputes, fraud, and plagiarism in science (309).  And it leads as well to the phenomenon of multiple discovery by independent researchers:
The pages of the history of science record thousands of instances of similar discoveries having been made by scientists working independently of one another.  Sometimes the discoveries are simultaneous or almost so; sometimes a scientist will make anew a discovery which, unknown to him, somebody else had made years before.  Such occurrences suggest that discoveries become virtually inevitable when prerequisite kinds of knowledge and tools accumulate in man's cultural store and when the attention of an appreciable number of investigators becomes focused on a problem, by emerging social needs, by developments internal to the science, or by both. (371)
A final topic of interest in Merton's sociology of science is his treatment of "peer review".  Here is how he describes this part of the institutions of science in "Institutionalized Patterns of Evaluation in Science" (1971):
The referee system in science involves the systematic use of judges to assess the acceptability of manuscripts submitted for publication.  The referee is thus an example of status judges who are charged with evaluating the quality of role-performances in a social system.  They are found in every institutional sphere. (460)
So we might encapsulate Merton's intellectual framework for the sociology of science in a few basic ideas: the sociologist needs to find ways of observing scientific practice empirically; the conduct of science is driven by the values that the institutions of science inculcate and enforce; the incentives created by the scientific institutions shape and motivate the behavior of scientists; and the product of science is the result of the constrained activities of scientists shaped and motivated in these particular ways.  So the sociologist needs to discover and document the values, he/she needs to uncover the evaluation mechanisms, and he/she needs to discover in detail how innovations and theories have emerged in specific research environments.

What this description leaves out from a contemporary perspective might include:
  • analysis of social networks of collaboration and communication among scientists
  • analysis of the institutions of training through which scientists learn their craft
  • content analysis of the results of scientific inquiry -- recurring features of theory and explanation within specific research traditions
(Trevor Pinch is an important contemporary contributor to current sociology of science and is one of the editors of the 1995 volume, Handbook of Science and Technology Studies. Here is a link to his syllabus for a seminar on the sociology of science that indicates how he conceptualizes the discipline.)

Sunday, October 4, 2009

Kuhn's paradigm shift


Thomas Kuhn's The Structure of Scientific Revolutions (1962) brought about a paradigm shift of its own, in the way that philosophers thought about science. The book was published in the Vienna Circle's International Encyclopedia of Unified Science in 1962. (See earlier posts on the Vienna Circle; post, post.) And almost immediately it stimulated a profound change in the fundamental questions that defined the philosophy of science. For one thing, it shifted the focus from the context of justification to the context of discovery. It legitimated the introduction of the study of the history of science into the philosophy of science -- and thereby also legitimated the perspective of sociological study of the actual practices of science. And it cast into doubt the most fundamental assumptions of positivism as a theory of how the science enterprise actually works.

And yet it also preserved an epistemological perspective. Kuhn forced us to ask questions about truth, justification, and conceptual discovery -- even as he provided a basis for being skeptical about the stronger claims for scientific rationality by positivists like Reichenbach and Carnap. And the framework threatened to lead to a kind of cognitive relativism: "truth" is relative to a set of extra-rational conventions of conceptual scheme and interpretation of data.

The main threads of Kuhn's approach to science are well known. Science really gets underway when a scientific tradition has succeeded on formulating a paradigm. A paradigm includes a diverse set of elements -- conceptual schemes, research techniques, bodies of accepted data and theory, and embedded criteria and processes for the validation of results. Paradigms are not subject to testing or justification; in fact, empirical procedures are embedded within paradigms. Paradigms are in some ways incommensurable -- Kuhn alluded to gestalt psychology to capture the idea that a paradigm structures our perceptions of the world. There are no crucial experiments -- instead, anomalies accumulate and eventually the advocates of an old paradigm die out and leave the field to practitioners of a new paradigm. Like Polanyi, Kuhn emphasizes the concrete practical knowledge that is a fundamental component of scientific education (post). By learning to use the instruments and perform the experiments, the budding scientist learns to see the world in a paradigm-specific way. (Alexander Bird provides a good essay on Kuhn in the Stanford Encyclopedia of Philosophy.)

A couple of questions are particularly interesting today, approaching fifty years after the writing of the book. One is the question of origins: where did Kuhn's basic intuitions come from? Was the idea of a paradigm a bolt from the blue, or was there a comprehensible line of intellectual development that led to it? There certainly was a strong tradition of study of the history of science from the late nineteenth to the twentieth century; but Kuhn was the first to bring this tradition into explicit dialogue with the philosophy of science. Henri Poincaré (The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Methods) and Pierre Duhem (The Aim and Structure of Physical Theory) are examples of thinkers who brought a knowledge of the history of science into their thinking about the logic of science. And Alexandre Koyré's studies of Galileo are relevant too (From the Closed World to the Infinite Universe); Koyré made plain the "revolutionary" character of Galileo's thought within the history of science. However, it appears that Kuhn's understanding of the history of science took shape through his own efforts to make sense of important episodes in the history of science while teaching in the General Education in Science curriculum at Harvard, rather than building on prior traditions.

Another question arises from the fact of its surprising publication in the Encyclopedia. The Encyclopedia project was a fundamental and deliberate expression of logical positivism. Structure of Scientific Revolutions, on the other hand, became one of the founding texts of anti-positivism. And this was apparent in the book from the start. So how did it come to be published here? (Michael Friedman takes up this subject in detail in "Kuhn and Logical Positivism" in Thomas Nickles, Thomas Kuhn (link).) George Reisch and Brazilian philosopher J. C. P. Oliveira address exactly this question. Oliveira offers an interesting discussion of the relationship between Kuhn and Carnap in an online article. He quotes crucial letters from Carnap to Kuhn in 1960 and 1962 about the publication of SSR in the Encyclopedia series. Carnap writes,
I believe that the planned monograph will be a valuable contri­bution to the Encyclopedia. I am myself very much interested in the problems which you intend to deal with, even though my knowledge of the history of science is rather fragmentary. Among many other items I liked your emphasis on the new conceptual frameworks which are proposed in revolutions in science, and, on their basis, the posing of new questions, not only answers to old problems. (REISCH 1991, p. 266)

I am convinced that your ideas will be very stimulating for all those who are interested in the nature of scientific theories and especially the causes and forms of their changes. I found very illuminating the parallel you draw with Darwinian evolution: just as Darwin gave up the earlier idea that the evolution was directed towards a predeter­mined goal, men as the perfect organism, and saw it as a process of improvement by natural selection, you emphasize that the develop­ment of theories is not directed toward the perfect true theory, but is a process of improvement of an instrument. In my own work on in­ductive logic in recent years I have come to a similar idea: that my work and that of a few friends in the step for step solution of prob­lems should not be regarded as leading to “the ideal system”, but rather as a step for step improvement of an instrument. Before I read your manuscript I would not have put it in just those words. But your formulations and clarifications by examples and also your analogy with Darwin’s theory helped me to see clearer what I had in mind. From September on I shall be for a year at the Stanford Center. I hope that we shall have an opportunity to get together and talk about problems of common interest. (REISCH 1991, pp.266-267)
Against what Oliveira calls "revisionist" historians of the philosophy of science, Oliveira does not believe that SSR was accepted for publication by Carnap because Carnap or other late Vienna School philosophers believed there was a significant degree of agreement between Kuhn and Carnap. Instead, he argues that the Encyclopedia group believed that the history of science was an entirely separate subject from the philosophy of science. It was a valid subject of investigation, but had nothing to do with the logic of science. Oliveira writes,
Thus, the publication of Structure in Encyclopedia could be justified merely by the fact that the Encyclopedia project had already reserved space for it. Indeed, it is worth pointing out that the editors commissioned Kuhn’s book as a work in history of science especially for publication in the Encyclopedia.
Also interesting is to consider where Kuhn's ideas went from here. How much influence did the theory have within philosophy? Certainly Kuhn had vast influence within the next generation of anti-positivist or post-positivist philosophy of science. And he had influence in fields very remote from philosophy as well. Paul Feyerabend was directly exposed to Kuhn at UCLA and picks up the anti-positivist thread in Against Method. Imre Lakatos introduces important alternatives to the concept of paradigm with his concept of a scientific research programme. Lakatos makes an effort to reintroduce rational standards into the task of paradigm choice through his idea of progressive problem shifts (The Methodology of Scientific Research Programmes: Volume 1: Philosophical Papers). An important volume involving Kuhn, Feyerabend, and Lakatos came directly out of a conference focused on Kuhn's work (Criticism and the Growth of Knowledge: Volume 4: Proceedings of the International Colloquium in the Philosophy of Science, London, 1965). Kuhn's ideas have had a very wide exposure within the philosophy of science; but as Alexander Bird notes in his essay in the Stanford Encyclopedia of Philosophy, there has not emerged a "school" of Kuhnian philosophy of science.

From the perspective of a half century, some of the most enduring questions raised by Kuhn are these:
  • What does the detailed study of the history of science tell us about scientific rationality?
  • To what extent is it true that scientific training inculcates adherence to a conceptual scheme and approach to the world that the scientist simply can't critically evaluate?
  • Does the concept of a scientific paradigm apply to other fields of knowledge? Do sociologists or art historians have paradigms in Kuhn's strong sense?
  • Is there a meta-theory of scientific rationality that permits scientists and philosophers to critically examine alternative paradigms?
  • And for the social sciences -- are Marxism, verstehen theory, or Parsonian sociology paradigms in the strong Kuhnian sense?
Perhaps the strongest legacy is this: Kuhn's work provides a compelling basis for thinking that we can do the philosophy of science best when we consider the real epistemic practices of working scientists carefully and critically. The history and sociology of science is indeed relevant to the epistemic concerns of the philosophy of science. And this is especially true in the case of the social sciences.

Reference
Reisch, George (1991). Did Kuhn Kill Logical Empiricism? Philosophy of Science, 58.

Saturday, September 19, 2009

The Vienna Circle on interdisciplinary science

Image: in place of a network map of the contributors to the Vienna Circle

One of the central projects of the Vienna Circle in the 1920s and 1930s was an ambitious one: to create an International Encyclopedia of Unified Science that would demonstrate the crucial unity of all the empirical sciences -- including sociology and psychology (INTERNATIONAL ENCYCLOPEDIA OF UNIFIED SCIENCE. VOLUME I; 1938). The Vienna Circle group included a distinguished number of philosophers and scientists, including Moritz Schlick, Otto Neurath, Rudolph Carnap, and Charles W. Morris; and non-Circle members Niels Bohr, John Dewey, and Bertrand Russell lent their names to the project as well. Their central intellectual commitments constituted the cutting edge of positivist empiricism in the early part of the twentieth century; they advocated for the unity of science, inter-theoretic coherence, and the aspiration to a comprehensive empirical-logical method of scientific knowledge validation. This group was highly influential in the development of subsequent analytic philosophy of science (e.g., Herbert Feigl, Ernest Nagel, and Carl Hempel); in fact, Neurath's description of "logical empiricism" is one that pretty well describes the philosophy of science of the 1940s through the early 1960s. This was a very important stage in the development of twentieth-century thinking about the sciences, and some of the most incisive thinkers in the world were involved in the project. (See Thomas Uebel's article on the Vienna Circle in the Stanford Encyclopedia of Philosophy.)

The positions and interpretations of Vienna Circle thinkers are particularly important here because these philosophers and scientists concentrated their thoughts on the question, what is science? And how do the various areas of scientific research relate to each other? And their writings have the advantage of a close acquaintance with some of the most important advances in a wide range of the sciences in the first several decades in the twentieth century, including physics, biology, psychology, and economics. So their writings have one of the characteristics that I think is most important in doing the philosophy of science: they formed their views in close engagement with particular areas of scientific research. These were brilliant thinkers; they were, on the whole, not dogmatic in their assumptions and judgments; they were sensitive to nuance in the doing of science; and they were deeply respectful of scientific work across a range of areas.

The first part of the Encyclopedia appeared in 1938, and it set the stage for the work that this international group of scientists and philosophers proposed to do (International Encyclopedia of Unified Science ; Volume 1 Part 2). Otto Neurath edited this volume, and his opening sentences in the initial essay set the stage:
Unified science became historically the subject of this Encyclopedia as a result of the efforts of the unity of science movement, which includes scientists and persons interested in science who are conscious of the importance of a universal scientific attitude. (1)
A bit later he links the work of the "unity of science" movement of his time to the writings of John Stuart Mill (discussed in an earlier post):
Modern scientific empiricism attained very late in its development a comprehensive work which analyzes empirical procedure in all scientific fields: John Stuart Mill's A System of Logic, Ratiocinative and Inductive, Being a Connected View of the Principles of Evidence and the Methods of Scientific Investigation. Mill does not question the fact that astronomy and social science, physics and biology, are sciences of the same type. ... Mill's work influenced modern empiricism despite the fact that many of his particularly statements were criticized. (9)
The central thrust of the Vienna Circle position on scientific knowledge is a joining of "empiricism" -- the view that all knowledge depends on empirical observations -- with "logicism" -- the idea that it is possible to give exact and rigorous interpretation of the idea of a valid inference. So the sciences are the ways in which we attempt to logically organize and express the facts of observations and the inferences we draw from these observations. And the work of the great logicians around the turn of the 20th century on the foundations of arithmetic -- Piano, Frege, Tarski, Russell -- gave the Vienna Circle thinkers a great deal of confidence in the power that is brought to scientific knowledge by formal systems of deductive logic.

The most extreme version of empiricism -- "knowledge consists of statements based on observations and deductively valid inferences from those statements" -- doesn't quite do the job, because it was quickly recognized that hypotheses and theories are not deductively entailed by a set of facts of observation. Consequently it is necessary to formulate a formal logic of confirmation (the task that Carl Hempel picked up with his hypothetico-deductive model of confirmation). In other words, empiricism needs something like an inductive logic in order to get the enterprise of science going. But the main elements of scientific knowledge are here: observation and inference.

The project of the Encyclopedia is to investigate how the various areas of existing science fit into this conception of scientific knowledge, and how they relate to each other. And the collaborators in the project think that there is a common scientific attitude -- respect for the empirical facts and logical deductions -- that extends across all the sciences.

It is interesting to notice the fact that Neurath's version of the unity of science does not imply reduction of all science to one super-theory:
Science itself is supplying its own integrating glue instead of aiming at a synthesis on the basis of a "super science" which is to legislate for the special scientific activities. The historical tendency of the unity of science movement is toward a unified science departmentalized into special sciences, and not toward a speculative juxtaposition of an autonomous philosophy and a group of scientific disciplines. (20)
Some of these observations make me think that it might be worth rethinking the import of the Vienna Circle. We're inclined to caricature the Vienna Circle as reductionist, positivist, and hyper-empiricist; and we tend to think of the movement as eliding the important differences across scientific disciplines. But there is a strong strand of scientific pluralism that flows through the project that is at odds with the reductionist reputation the movement has.

One might almost be inclined to call the Encyclopedia project one that emphasizes the value of inter-disciplinary collaboration, rather than a reductionist programme that seeks to impose a single set of principles and methods on all sciences. And in fact, Neurath seems to go out of his way to disavow the hope of reducing the special sciences to some single core science. Here is how Charles H. Morris ends his contribution in this opening volume with the title, "Scientific Empiricism":
This Encyclopedia, reflecting this inclusive standpoint, rightfully sounds the roll call of those distinguished logicians, scientists, and empiricists whom the traditional history of ideas has so shamefully neglected. But basically it aims to present through extensive co-operation the existing status and the unrealized possibilities for the integration of science. Its existence signalizes the union of scientific and philosophic traditions in a common task. (74-75)
And the scientific value of cross-disciplinary collaboration that the Vienna Circle members shared is reflected in the international group of scholars they gathered together in the 1930s. Here is the International Committee of the International Congresses for the Unity of Science (International Encyclopedia of Unified Science ; Volume 1 Part 2, p. 26):
N. Bohr, M. Boll, H. Bonnet, P. W. Bridgman, E. Brunswik, R. Carnap, E. Cartan, J. Clay, M. R. Cohen, J. Dewey, F. Enriques, P. Frank, M. Frechet, F. Gonseth, J. Hadamard, P. Janet, H. S. Jennings, J. Joergensen, E. Kaila, T. Kotarbinski, A. Lalande, P. Langevin, K. S. Lashley, C. I. Lewis, J. Lukasiewicz, G. Mannoury, R. von Mises, C. W. Morris, O. Neurath, C. K. Ogden, J. Perrin, H. Reichenbach, A. Rey, C. Rist, L. Rougier, B. Russell, L. S. Stebbing, J. H. Woodger
Later volumes add several additional names to the list of the membership of the Advisory Committee:
Herbert Feigl, Clark Hull, Waldemar Kaempffert, Victor Lenzen, William M. Malissoff, Ernest Nagel, Arne Naess, Alfred Tarski, Edward C. Tolman (1944)
Out of the 46 individuals listed, 11 are from France; 15 are located in the United States; and only one is located in Austria. The disciplines of philosophy, psychology, physics and logic are the largest groups, and there are a few economists included as well. It would be very interesting to extend this into a map of networks of influence in the next generation.

Here are the tables of contents for Volumes I and II. There are a few surprises on the contents for the second volume.

Volume 1
  • Encyclopedia and Unified Science / Otto Neurath et al
  • Foundations of the Theory of Signs / Charles Morris
  • Foundations of Logic and Mathematics / Rudolph Carnap
  • Linguistic Aspects of Science / Leonard Bloomfield
  • Procedures of Empirical Science / Victor Lenzen
  • Principles of the Theory of Probability / Ernest Nagel
  • Foundations of Physics / Phillipp Frank
  • Cosmology / E. Finlay-Freundlich
  • Foundations of Biology / Felix Mainx
  • The Conceptual Framework of Psychology / Egon Brunswik
Volume 2
  • Foundations of the social sciences / Otto Neurath
  • Structure of scientific revolutions / Thomas Kuhn
  • Science and the structure of ethics / Abraham Edel
  • Theory of valuation / John Dewey
  • Technique of theory construction / J. H. Woodger
  • Methodology of mathematical economics / Gerhard Tintner
  • Fundamentals of concept formation in empirical science / Carl Hempel
  • Development of rationalism and empiricism / Giorgio De Santillana and Edgar Zilsel
  • Development of logical empiricism / Jorgen Jorgensen
  • Bibliography and index / Herbert Feigl and Charles Morris

Wednesday, December 31, 2008

Philosophy of X?


When philosophers do their thinking within a field called "the philosophy of X", there is always a natural question that arises: how will philosophical reflection about X be helpful or constructive for the practitioners of X? For example, how might the philosophy of science be helpful for working scientists? How can the philosophy of biology or economics be helpful to biologists or economists? And, for that matter -- why isn't there a philosophy of plumbing or long-distance bus driving?

As for the last question, there seem to be two separate reasons for this gap in the spectrum -- a dearth of difficult conceptual problems and a lack of potentially useful consequences. First, philosophy finds traction when it deals with subject matter that raises difficult conceptual or inferential issues. Philosophers are particularly good at untangling unclear concepts; they are experienced at the task of formulating problems clearly and logically; they are ready to unmask the hidden presuppositions underlying a particular formulation. This is the kind of work Wittgenstein describes as "letting the fly out of the fly bottle"; it is what J. L. Austin does so well in "Three ways of spilling ink" (link). Drawing distinctions and formulating ideas clearly -- these are core intellectual tools, and they lie at the root of philosophy.

Another core intellectual tool is the commitment to providing justification for the things we believe, and raising reflective questions about the nature of rational justification. What is the evidence that supports a given belief? What degree of warrant does this evidence create? Why do statements like these make it more likely that P is true? Questions like these too are foundational for philosophy -- from Plato to Locke to Quine. And philosophers have a developed and nuanced set of frameworks and vocabularies in terms of which to interrogate them.

Both these types of intellectual work are doubly cognitive. They represent cognitive effort directed at examples of cognitive effort -- efforts to explain the workings of nature, the behavior of other people, or the workings of social institutions. Putting the point very simply -- philosophers are good at helping us think clearly about thinking. And, at their best, they can help us think more clearly and coherently.

So now we have part of an answer for why there is no philosophy of plumbing: plumbing is a routine activity with few conceptual puzzles and a secure base of practical knowledge. There just isn't any room for philosophical analysis in this realm. And, second, there is the pragmatic point: it is very hard to see how the plumbers might benefit from philosophical analysis. If Deleuze were to write a treatise on plumbing, how could that possibly enhance the practical discipline of plumbing? The plumbers' effective ability to control the water and waste systems of our buildings would not be enhanced by conceptual or epistemic analysis. Their conceptual and theoretical problems are well-mapped; all that remains is to discover the source of the leak. And this does not require philosophy.

Why, then, do we need other philosophies of X's? What is it about economics, evolution, or the mind that makes it intellectually and practically valuable to have a philosophy of economics, biology, or psychology? The answer proceeds along the lines sketched here. All these disciplines confront huge problems of concept formation, theory construction, and inference and justification. The most basic questions remain unsettled: does capitalism exist? How are theories and models related to the empirical world? Is there such a thing as group selection? How do emotions intersect with reasoning? What is consciousness? And in all these fields, there is the problem of inference and method -- again, unresolved. So there is ample room for philosophical thinking in these fields.

But more importantly, philosophy can help to improve the intellectual practices of the cognitive-empirical disciplines. By working productively in tandem with creative scientific researchers, with a focus on the conceptual and methodological problems that matter the most, philosophers can help contribute to real progress in the disciplines. This requires the philosopher to engage with the discipline in depth. But the fruits of this sort of synergy can be highly productive. It is sometimes complained that philosophy brings only "logic chopping" and dry conceptual analysis. But this is a caricature; the conceptual issues faced by the special sciences are deeply challenging, and sustained dialogue with philosophers can potentially lead to meaningful progress in the science. And reciprocally, quite a few traditional concerns of philosophy --in ontology, epistemology, and the theory of the mind, for example -- can be significantly deepened through close engagement with current scientific work. There need not be a sharp line of demarcation between philosophy and empirical research.

Wednesday, September 10, 2008

What is social scientific knowledge?

The social and behavioral sciences endeavor to describe, explain, and interpret the range of the social and behavioral facts that surround us. To refer to this body of findings as “science” is to claim a set of epistemic values about the nature of the methods of inquiry and evaluation that are used to arrive at and assess the conclusions offered about this domain. The label “science” brings with it a set of presuppositions about rigor, evidence, generalizability, logical analysis, objectivity, cumulativeness, and the likelihood that the assertions that are made are true.

Consider a few assumptions that are often made about scientific knowledge—some valid and some not. Science is based on a set of rationally justified methods of inquiry and testing. Scientific knowledge progresses, in scope, in detail of understanding, and in reliability. Science is performed by specialists, working within equally exacting communities of peers and competitors and subject to a demanding set of standards of evaluation—peer-reviewed journals, university review processes, national laboratories, and international associations and conferences. The result of these processes of testing and evaluation, we expect, is an expanding body of hypotheses, experimental findings, observations, theories, and explanations that have substantial credibility—and substantially higher credibility than the writings of casual observers of a given range of phenomena. We come to know the nature of the world better through the institutions and methods of science.

In addition to these reasonably valid assumptions about scientific knowledge, there is another group of more questionable ideas that derive from assumptions drawn from the natural sciences. Science permits generalizations; it permits us to systematize otherwise apparently separate domains of phenomena (planetary motion, the tides; rational choice theory, behavior of the family) and to demonstrate that apparently heterogeneous sets of phenomena are in fact governed by the same general laws. Science permits predictions; if the fundamentals are thus-and-so, then the compounds will behave thusly. Science aims at unification: the discovery of unitary systems of forces and entities whose aggregate properties represent the whole of nature.

Notice that these latter expectations are derived from the successes and specific characteristics of certain of the natural sciences. And this marks the first of many opportunities for error in the philosophy of social science. There is no reason to expect that the social domain possesses the underlying nature and orderliness that would make it possible to achieve some of these characteristics (in particular, uniformity, generalizability, unification, simplicity). Consider some other areas of possible empirical research—for example, animal behavior. We should not expect there to be comprehensive theories of animal behavior. Instead, we should expect many threads of research, corresponding to many dimensions of animal behavior: cognition, memory, instinct, social behaviors, migratory behavior. And these many strands of research would reach out to different kinds of causal backgrounds: evolutionary biology, neurophysiology, intra-group learning. Likewise with the domain of social behavior. There is no single unified “theory of human motivation”—whether rational choice theory, social psychology, or any other unified theory. And this is so, because there is no unified reality of motivation and action; rather, there is a heterogeneous range of motives, errors, impulses, commitments, and habits that together constitute “dispositions to behave.”

What underwrites the claim of truthfulness for scientific knowledge? What gives us a rational basis for believing that the results of the socially constructed activities of science lead to true hypotheses about the nature and workings of the phenomena that scientific inquiry considers? There is, first, the basic argument of empiricism: we can observe some features of the world and establish certain statements as being probable. And we can use a collection of tools of inference to establish credibility of other non-observational statements (deductive and inductive logic, statistics, the experimental method, causal modeling).

This simple empiricist epistemology underwrites the strongest claims for veridicality and justification for the social sciences. The discovery of empirical facts about the social world is possible but challenging; this is what much of social science methodology attempts to under-gird. And hypotheses about the causal relationships that exist among social entities and processes can be tested using a variety of methods of inference that themselves possess strong epistemic justification. We have learned from the writings of philosophers of science since the 1960s to emphasize corrigibility and anti-foundationalism in our interpretation of scientific knowledge; but a coherentist epistemology and a perspective of causal realism provides a philosophically powerful grounding for social science knowledge. (See articles in the Stanford Encyclopedia of Philosophy on coherence epistemology and scientific realism by Kvanvig and Boyd).

In addition, in some areas of the natural sciences, there is the fact that cumulative scientific research leads to the invention of technologies that work as they were designed to do: new materials are invented in the electronics industry, new designs are created for large structures (buildings, aircraft, electron microscopes), and these materials and artifacts perform as expected on the basis of the underlying theories. So scientific theories of materials, structures, and natural systems are supported by the effectiveness of the technologies that they give rise to. If the theories and hypotheses were fundamentally untrue about the parts of the natural world that they describe, then we would expect the technologies to fail; the technologies do not fail; so we have some additional reason to believe the scientific theories that underlay these technologies. (This is a version of Richard Boyd’s argument of methodological realism.)

Is there anything analogous to the relationship between the natural sciences and technology, for the social and behavioral sciences? On the whole, there is not. Social predictions are notoriously unreliable; public policies based on social-science theory commonly give rise to unanticipated consequences; and the twists and turns of deliberate social processes (war, alliance, efforts to address global warming) continue to surprise us. This unpredictability in the social world derives from the nature of social action. Human behavior and social processes are plainly subject to an open-ended range of causes, motives, and influences. The construction of various areas of science with the goal of understanding and explaining this multiplicity is therefore a profoundly challenging task.

Here, then, is a very elliptical description of a plausible interpretation of social science epistemology: There are empirical foundations for knowledge in the form of social observation (empiricism); there are social causes that influence social behavior, processes, and outcomes (causal realism); there is no a priori reason to expect strong generalizations across social phenomena, “regulating” the social world; and there is no reason to expect unified master theories of social phenomena, suggesting instead a preference for theories of the middle range.

Saturday, June 21, 2008

Tributaries of the philosophy of the social sciences


The philosophy of the social sciences is largely focused on questions about the nature of our knowledge, representation, and explanation of social phenomena. There is an ontological side to some of the questions in this field -- for example, what is the nature of social phenomena? But many of the questions are epistemological, having to do with the conditions of knowledge and representation that obtain when it comes to social facts. I think it is useful to sketch out a map that indicates the topography of some of the fundamental questions and approaches that have contributed to a better understanding of social science. And this effort will demonstrate that there is no single, coherent field that is the "philosophy of social science"; instead, there are overlapping and intertwined efforts by several traditions to arrive at better and more justified representations of social knowledge.

The fruitful ideas in this field derive from several separate tributaries, it seems to me. One important source is the group of "founders" of the social sciences who themselves thought very hard about the question of the conditions of establishing a social "science". Max Weber, Emile Durkheim, Georg Simmel, William Thomas, and George Herbert Mead all had original and insightful ideas about what a scientific study of social reality might consist in. And, in most instances, these ideas were driven by their acquaintance with the richness of social life rather than by philosophical presuppositions. So these founders forged a philosophy of social research along the way as they constructed their models of what theory and research ought to look like in the study of the social world.

Another important source for current philosophy of social science is the tradition of empiricism that led to twentieth-century analytic philosophy of science. Here we can highlight John Stuart Mill, Moritz Schlick, Carl Hempel, and Ernest Nagel as philosophers who brought the machinery of positivist epistemology to a conception of what the social sciences ought to look like. As suggested in an earlier posting, there are profound problems with some of these ideas; but there is no doubt that they have been influential. And this influence shows up very explicitly in social science writings concerned with the logic of quantitative social research.

There is another source for contemporary philosophy of social science that has something in common with both these but is nonetheless distinct. This is the impulse that comes from rational choice theory and the idea that social patterns are the expression of individual rational choices. Mill's writings suggest this idea, and it is a very strong component of the classics defining microeconomic theory as well (Walras, Pareto, the Austrian school). The effort to bring decision theory and game theory into play in explaining concrete social developments is a manifestation of this approach -- for example, Samuel Popkin's work on peasant rebellions (The Rational Peasant: The Political Economy of Rural Society in Vietnam). What makes this framework philosophical is the implicit idea of reductionism that it offers as a strategy of explanation: high-level social facts need to be decomposed into logical compounds of lower-level facts at the level of individuals. (This is the doctrine of methodological individualism.)

The intellectual framework of "scientific realism" is also an important tributary to contemporary philosophy of social science. Against the instrumentalism associated with positivism, this approach maintains that the social or natural worlds possess an objective set of characteristics, and it is possible to know the approximate outlines of these characteristics. When brought into contact with the social sciences, realism leads us to expect that there are real social structures, conditions, and causes, and that it is one of the functions of social science to describe those real circumstances and their relationships with each other. The recent emphasis on "social-causal mechanisms" is a version of scientific realism in application to the social world -- for example, Social Mechanisms: An Analytical Approach to Social Theory.

There are two other tributaries that are important contributions but that have been less influential for analytic philosophers of social science, one deriving from Marx and the other from thinkers like Dilthey and Gadamer. The first is materialism and an emphasis on social structures, and the other is the hermeneutic tradition. The materialist tradition attempts to organize social reality around a set of structures with causal properties (modes of production, property relations, forms of technology). The hermeneutic tradition takes "social action" as the fundamental social fact, and looks at the challenge of interpreting social action as the fundamental problem in social research. Yvonne Sherratt's Continental Philosophy of Social Science is a very useful study of the influence of these traditions, and I will return to her discussion in a later posting.

Thursday, June 19, 2008

Quasi-experimental data?

Stan Lieberson is one of a group of sociologists for whom I have great respect when it comes to intelligent thinking about social science methodology. His 1985 book, Making It Count: The Improvement of Social Research and Theory, is a good example of some of this thinking about the foundations of social science knowledge, and I also admire A Matter of Taste: How Names, Fashions, and Culture Change in the way it offers a genuinely novel topic and method of approach.

Lieberson urges us to consider "a different way of thinking about the rigorous study of society implied by the phrase 'science of society'" instead of simply assuming that social science should resemble natural science (3-4). His particular object of criticism in this book is the tendency of quantitative social scientists to use the logic of experiments to characterize the data they study.

An experiment is an attempt to measure the causal effects of one factor X on another factor Z by isolating a domain of phenomena -- holding constant all other causal factors -- and systematically varying one causal factor to observe the effect this factor has on an outcome of interest. The basic assumption is that an outcome is the joint effect of a set of (as yet unknown) causal conditions:

C1 & C2 & ... & Cn cause Z,

where we do not yet know the contents of the list Ci. We consider the hypothesis that Cm is one of the causes of Z. We design an experimental environment in which we are able to hold constant all the potentially relevant causal conditions we can think of (thereby holding fixed Ci), and we systematically vary the presence or absence of Cm and observe the state of the outcome Z. If Z varies appropriately with the presence or absence of Cm, we tentatively conclude that Cm is one of the causes of Z.

In cases where individual differences among samples or subjects may affect the outcome, or where the causal processes in question are probabilistic rather than deterministic, experimentation requires treating populations rather than individuals and assuring randomization of subjects across "treatment" and "no-treatment" groups. This involves selecting a number of subjects, randomly assigning them to controlled conditions in which all other potential causal factors are held constant, exposing one set of subjects to the treatment X while withholding the treatment from the other group, and measuring the outcome variable in the two groups. If there is a significant difference in the mean value of the outcome variable between the treatment group and the control group, then we can tentatively conclude that X causes Z and perhaps estimate the magnitude of the effect. Take tomato yields per square meter (Z) as affected by fertilizer X: plants in the control group are subjected to a standard set of growing conditions, while the treatment group receives these conditions plus the measured dose of X. We then measure the quantity produced by the two plots and estimate the effect of X. The key ideas here are causal powers, random assignment, control, and single-factor treatment.

However, Lieberson insists that most social data are not collected under experimental conditions. It is normally not possible to randomly assign individuals to groups and then observe the effects of interventions. Likewise, it is not possible to systematically control the factors that are present or absent for different groups of subjects. If we want to know whether "presence of hate speech on radio broadcasts" causes "situations of ethnic conflict" to progress to "situations of ethnic violence" -- we don't have the option of identifying a treatment group and a control group of current situations of ethnic conflict, and then examine whether the treatment with "hate speech on radio broadcasts" increases the incidence of ethnic violence in the treatment group relative to the control group. And it is fallacious to reason about non-experimental data using the assumptions developed for analysis of experiments. This fallacy involves making "assumptions that appear to be matters of convenience but in reality generate analyses that are completely off the mark" (6).

Suppose we want to investigate whether being a student athlete affects academic performance in college. In order to treat this topic experimentally we would need to select a random group of newly admitted students; randomly assign one group of individuals to athletic programs and the other group to a non-athletic regime; and measure the academic performance of each individual after a period of time. Let's say that GPA is the performance measure and that we find that the athlete group has a mean GPA of 3.1 while the non-athlete group has an average of 2.8. This would be an experimental confirmation of the hypothesis that "participation in athletics improves academic performance."

However, this thought experiment demonstrates the common problem about social data: it is not possible to perform this experiment. Rather, students decide for themselves whether they want to compete in athletics, and their individual characteristics will determine whether they will succeed. Instead, we have to work with the social realities that exist; and this means identifying a group of students who have chosen to participate in athletics; comparing them with a "comparable" group of students who have chosen not to participate in athletics; and measuring the academic performance of the two groups. But here we have to confront two crucial problems: selectivity and the logic of "controlling" for extraneous factors.

Selectivity comes in when we consider that the same factors that lead a college student to participate in athletics may also influence his/her academic performance; so measuring the difference between the two groups may only measure the effects of this selective difference between membership in the groups -- not the effect of the experience of participating in athletics on academic performance. In order to correct for selectivity, the researcher may attempt to control for potentially influential differences between the two groups; so he/she may attempt to control for family factors, socio-economic status, performance in secondary school, and a set of psycho-social variables. "Controlling" in this context means selecting sub-groups within the two populations that are statistically similar with respect to the variables to be controlled for. Group A and Group B have approximately the same distribution of family characteristics, parental income, and high school GPA; the individuals in the two groups are "substantially similar". We have "controlled" for these potentially relevant causal factors -- so any observed differences between academic performance across the two groups can be attributed to the treatment, "participation in athletics."

But Lieberson makes a critical point about this approach: there is commonly unmeasured selectivity within the control variables themselves -- crudely, students with the same family characteristics, parental income, and high school GPA who have selected athletics may nonetheless be different from those who have not selected athletics, in ways that influence academic performance. As Lieberson puts the point, "quasi-experimental research almost inevitably runs into a profound selectivity issue" (41).

There is lots more careful, rigorous analysis of social-science reasoning in the book. Lieberson crosses over between statistical methodology and philosophy of social science in a very useful way, and what is most fundamental is his insistence that we need to substantially rethink the assumptions we make in assigning causal influence on the basis of social variation.


Thursday, June 12, 2008

Components of positivism

Many of us agree that "positivist" social science isn't a good idea. But what is encompassed by "positivism" in this setting?

First, the favorable part of the story: positivism puts forward two ideas about conceptual clarity and empirical rigor that surely need to be a part of any intellectually sound effort to understand society, or to contribute to social science. Our concepts need to make sense (by some criterion of sense-making), and our assertions need to be supportable by some combination of empirical evidence and logical inference. These amount simply to the requirement that science should be rationally articulated and rationally justified. These are aspects of the epistemology of science advanced by the progenitors of positivism -- for example, Mill, Comte, the Vienna Circle, Schlick, Carnap, Hempel -- that I, for one, do accept. And if this were the full extent of positivism, then it would be hard to be anti-positivist.

But positivist social science makes several additional assumptions about social knowledge that are untenable, in my view.

First is naturalism -- the idea that the social and behavioral sciences should have the same structure and logical characteristics as the natural sciences. Chemistry and physics -- especially the classical versions of these sciences -- have a unified hypothetico-deductive structure; they discover laws of nature; and they derive the observable features of the domains of phenomena they encompass. Naturalism postulates, therefore, that sociology, economics, or psychology should have the same logical structure, because that is what "science" requires. John Stuart Mill clearly presupposed this assumption in his discussion of the "moral sciences."

Second, relatedly, is the unity of science -- the idea that ultimately all scientific theories should be subsumable under one "most fundamental" master theory. This assumption brings with it the idea of reductionism; higher-level sciences (psychology) should be reducible to lower-level sciences (neurophysiology). And "reducible" means "derivable from given suitable bridge definitions and laws". (This topic was central for the Vienna Circle logical positivists.)

Third is an assumption about methodology, to the effect that measurement and quantification are essential aspects of scientific knowledge. So quantitative statements and theories are preferable to qualitative or descriptive statements; and the goal of a social science should be to discover a set of variables within the domain of investigation that can be observed, measured, and counted. This is a different aspect of the unity-of-science doctrine: the idea that there should be one privileged method of discovery and presentation for the social sciences. Where does this assumption come from? In part, it seems to derive from the physics-envy associated with naturalism; but perhaps there is also a Platonic dimension as well -- a preference for mathematics over descriptive or interpretive language.

Fourth is an assumption about explanation, regularities, and laws. The assumption here is that explanation requires the discovery of law-like generalizations about the domain of phenomena encompassed by the scientific field. This assumption has two components: the idea that a well-defined domain of investigation must somehow embody a set of regularities, perhaps disguised by the noise; and second, that explanations within the domain of individual events or patterns of events must take the form of a derivation of the explanandum from the general laws mentioned in the explanans. Carl Hempel and J.S. Mill agree about this premise.

Fifth is an assumption about causation -- that causation is a feature of statistical relationships among variables rather than a feature involving causal necessity or causal mechanisms. This is a Humean approach to causation, and it leads positivist social scientists to restrict their attention to causal regularities rather than looking for real causal mechanisms.

Finally, there is a sixth premise that has also created debate but seems less intrusive to the practice of innovative social science -- the insistence on the fact-value distinction. "Positive" science has to do with the discovery of facts, whereas ethics or policy stidies have to do with values.

Do these assumptions necessarily travel together? Not necessarily, though there are some internal logical connections among them that make it more difficult to imagine them standing completely independently. But it appears to be a characteristic of the observed sociology of science for an important stream of twentieth-century social science research, that these features are clustered together. And many critics argue that these assumptions have created blinders for social-science researchers, limiting their originality in theories, concepts, and explanations of the social world.

Critics of positivist social science ask us to consider a broader space of possibilities for research and theory formation in the social sciences. Taking the premise of scientific rationality as a given, what would a philosophy of social science look like that questioned the other premises on this list? What is a "post-positivist realism" for the social sciences?
  • It is realist about causation; it affirms the scientific validity of seeking for real social mechanisms.
  • It advocates for a conception of scientific explanation that hinges on the discovery of real causal connections among features of the social world.
  • It is pluralistic about method; it acknowledges that there are multiple rationally supportable methods of inquiry in the social sciences, and multiple forms that social-science knowledge can take.
  • It is even-handed among quantitative, qualitative, comparative, and narrative approaches to social inquiry and social explanation.
  • It is anti-reductionist and anti-naturalistic: it does not presuppose that various areas of the social sciences should be reducible to some other, more fundamental scientific theory; and it does not presuppose that the social sciences should resemble the natural sciences.
  • And, finally, it is fully committed to the positive features of rationality that were mentioned above: the scientific virtues of conceptual clarity and empirical-rational justification for scientific beliefs.
This set of alternatives opens up the space of the social sciences quite dramatically; it permits a wide and pluralistic range of inquiries to proceed, without the requirement of theoretical or methodological unity. And this frees researchers to arrive at accounts of their domains of research that are well suited to the particulars of these domains.

In a later posting I will come back to an important contribution to this debate, George Steinmetz's The Politics of Method in the Human Sciences: Positivism and Its Epistemological Others.