Navigation page

Pages

Monday, August 12, 2019

Testing the NRC


Serious nuclear accidents are rare but potentially devastating to people, land, and agriculture. (It appears that minor to moderate nuclear accidents are not nearly so rare, as James Mahaffey shows in Atomic Accidents: A History of Nuclear Meltdowns and Disasters: From the Ozark Mountains to Fukushima.) Three Mile Island, Chernobyl, and Fukushima are disasters that have given the public a better idea of how nuclear power reactors can go wrong, with serious and long-lasting effects. Reactors are also among the most complex industrial systems around, and accidents are common in complex, tightly coupled industrial systems. So how can we have reasonable confidence in the safety of nuclear reactors?

One possible answer is that we cannot have reasonable confidence at all. However, there are hundreds of large nuclear reactors in the world, and 98 active nuclear reactors in the United States alone. So it is critical to have highly effective safety regulation and oversight of the nuclear power industry. In the United States that regulatory authority rests with the Nuclear Regulatory Commission. So we need to ask the question: how good is the NRC at regulating, inspecting, and overseeing the safety of nuclear reactors in our country?

One would suppose that there would be excellent and detailed studies within the public administration literature that attempt to answer this question, and we might expect that researchers within the field of science and technology studies might have addressed it as well. However, this seems not to be the case. I have yet to find a full-length study of the NRC as a regulatory agency, and the NRC is mentioned only twice in the 600-plus page Oxford Handbook of Regulation. However, we can get an oblique view of the workings of the NRC through other sources. One set of observers who are in a position to evaluate the strengths and weaknesses of the NRC are nuclear experts who are independent of the nuclear industry. For example, publications from the Bulletin of the Atomic Scientists include many detailed reports on the operations and malfunctions of nuclear power plants that permit a degree of assessment of the quality of oversight provided by the NRC (link). And a detailed (and scathing) report by the General Accounting Office on the near-disaster at the Davis-Besse nuclear power plant is another expert assessment of NRC functioning (link).

David Lochbaum, Edwin Lyman, and Susan Stranahan fit the description of highly qualified independent scientists and observers, and their detailed case history of the Fukushima disaster provides a degree of insight into the workings of the NRC as well as the Japanese nuclear safety agency. Their book, Fukushima: The Story of a Nuclear Disaster, is jointly written by the authors under the auspices of the Union of Concerned Scientists, one of the best informed networks of nuclear experts we have in the United States. Lochbaum is director of the UCS Nuclear Safety Project and author of Nuclear Waste Disposal Crisis. The book provides a careful and scientific treatment of the unfolding of the Fukushima disaster hour by hour, and highlights the background errors that were made by regulators and owners in the design and operation of the Fukushima plant as well. The book makes numerous comparisons to the current workings of the NRC which permit a degree of assessment of the US regulatory agency.

In brief, Lochbaum and his co-authors appear to have a reasonably high opinion of the technical staff, scientists, and advisors who prepare recommendations for NRC consideration, but a low opinion of the willingness of the five commissioners to adopt costly recommendations that are strongly opposed by the nuclear industry. The authors express frustration that the nuclear safety agencies in both countries appear to have failed to have learned important lessons from the Fukushima disaster:
“The [Japanese] government simply seems in denial about the very real potential for another catastrophic accident.... In the United States, the NRC has also continued operating in denial mode. It turned down a petition requesting that it expand emergency evacuation planning to twenty-five miles from nuclear reactors despite the evidence at Fukushima that dangerous levels of radiation can extend at least that far if a meltdown occurs. It decided to do nothing about the risk of fire at over-stuffed spent fuel pools. And it rejected the main recommendation of its own Near-Term Task Force to revise its regulatory framework. The NRC and the industry instead are relying on the flawed FLEX program as a panacea for any and all safety vulnerabilities that go beyond the “design basis.” (kl 117)
They believe that the NRC is excessively vulnerable to influence by the nuclear power industry and to elected officials who favor economic growth over hypothetical safety concerns, with the result that it tends to err in favor of the economic interests of the industry.
Like many regulatory agencies, the NRC occupies uneasy ground between the need to guard public safety and the pressure from the industry it regulates to get off its back. When push comes to shove in that balancing act, the nuclear industry knows it can count on a sympathetic hearing in Congress; with millions of customers, the nation’s nuclear utilities are an influential lobbying group. (36)
They note that the NRC has consistently declined to undertake more substantial reform of its approach to safety, as recommended by its own panel of experts. The key recommendation of the Near-Term Task Force (NTTF) was that the regulatory framework should be anchored in a more strenuous standard of accident prevention, requiring plant owners to address "beyond-design-basis accidents". The Fukushima earthquake and tsunami events were "beyond-design-basis"; nonetheless, they occurred, and the NTTF recommended that safety planning should incorporate consideration of these unlikely but possible events.
The task force members believed that once the first proposal was implemented, establishing a well-defined framework for decision making, their other recommendations would fall neatly into place. Absent that implementation, each recommendation would become bogged down as equipment quality specifications, maintenance requirements, and training protocols got hashed out on a case-by-case basis. But when the majority of the commissioners directed the staff in 2011 to postpone addressing the first recommendation and focus on the remaining recommendations, the game was lost even before the opening kickoff. The NTTF’s Recommendation 1 was akin to the severe accident rulemaking effort scuttled nearly three decades earlier, when the NRC considered expanding the scope of its regulations to address beyond-design accidents. Then, as now, the perceived need for regulatory “discipline,” as well as industry opposition to an expansion of the NRC’s enforcement powers, limited the scope of reform. The commission seemed to be ignoring a major lesson of Fukushima Daiichi: namely, that the “fighting the last war” approach taken after Three Mile Island was simply not good enough. (kl 253)
As a result, "regulatory discipline" (essentially the pro-business ideology that holds that regulation should be kept to a minimum) prevailed, and the primary recommendation was tabled. The issue was of great importance, in that it involved setting the standard of risk and accident severity for which the owner needed to plan. By staying with the lower standard, the NRC left the door open to the most severe kinds of accidents.

The NTTF task force also addressed the issue of "delegated regulation" (in which the agency defers to the industry in many issues of certification and risk assessment) (Here is the FAA's definition of delegated regulation; link.)
The task force also wanted the NRC to reduce its reliance on industry voluntary initiatives, which were largely outside of regulatory control, and instead develop its own “strong program for dealing with the unexpected, including severe accidents.” (252)
Other more detail-oriented recommendations were refused as well -- for example, a requirement to install reliable hardened containment vents in boiling water reactors, with a requirement that these vents should incorporate filters to remove radioactive gas before venting. 
But what might seem a simple, logical decision—install a $15 million filter to reduce the chance of tens of billions of dollars’ worth of land contamination as well as harm to the public—got complicated. The nuclear industry launched a campaign to persuade the NRC commissioners that filters weren’t necessary. A key part of the industry’s argument was that plant owners could reduce radioactive releases more effectively by using FLEX equipment.... In March 2013, they voted 3–2 to delay a requirement that filters be installed, and recommended that the staff consider other alternatives to prevent the release of radiation during an accident. (254)
The NRC voted against including the requirement of filters on containment vents, a decision that was based on industry arguments that the cost of the filters was excessive and unnecessary.

The authors argue that the NRC needs to significantly rethink its standards of safety and foreseeable risk.
What is needed is a new, commonsense approach to safety, one that realistically weighs risks and counterbalances them with proven, not theoretical, safety requirements. The NRC must protect against severe accidents, not merely pretend they cannot occur. (257)
Their recommendation is to make use of an existing and rigorous plan for reactor safety incorporating the results of "severe accident mitigation alternatives" (SAMA) analysis already performed -- but largely disregarded.

However, they are not optimistic that the NRC will be willing to undertake these substantial changes that would significantly enhance safety and make a Fukushima-scale disaster less likely. Reporting on a post-Fukushima conference sponsored by the NRC, they write:
But by now it was apparent that little sentiment existed within the NRC for major changes, including those urged by the commission’s own Near-Term Task Force to expand the realm of “adequate protection.”
Lochbaum and his co-authors also make an intriguing series of points about the use of modeling and simulation in the effort to evaluate safety in nuclear plants. They agree that simulation methods are an essential part of the toolkit for nuclear engineers seeking to evaluate accident scenarios; but they argue that the simulation tools currently available (or perhaps ever available) fall far short of the precision sometimes attributed to them. So simulation tools sometimes give a false sense of confidence in the existing safety arrangements in a particular setting.
Even so, the computer simulations could not reproduce numerous important aspects of the accidents. And in many cases, different computer codes gave different results. Sometimes the same code gave different results depending on who was using it. The inability of these state-of-the-art modeling codes to explain even some of the basic elements of the accident revealed their inherent weaknesses—and the hazards of putting too much faith in them. (263)
In addition to specific observations about the functioning of the NRC the authors identify chronic failures in the nuclear power system in Japan that should be of concern in the United States as well. Conflict of interest, falsification of records, and punishment of whistleblowers were part of the culture of nuclear power and nuclear regulation in Japan. And these problems can arise in the United States as well. Here are examples of the problems they identify in the Japanese nuclear power system; it is a valuable exercise to attempt to determine whether these issues arise in the US regulatory environment as well.

Non-compliance and falsification of records in Japan
Headlines scattered over the decades built a disturbing picture. Reactor owners falsified reports. Regulators failed to scrutinize safety claims. Nuclear boosters dominated safety panels. Rules were buried for years in endless committee reviews. “Independent” experts were financially beholden to the nuclear industry for jobs or research funding. “Public” meetings were padded with industry shills posing as ordinary citizens. Between 2005 and 2009, as local officials sponsored a series of meetings to gauge constituents’ views on nuclear power development in their communities, NISA encouraged the operators of five nuclear plants to send employees to the sessions, posing as members of the public, to sing the praises of nuclear technology. (46)
The authors do not provide evidence about similar practices in the United States, though the history of the Davis-Besse nuclear plant in Ohio suggests that similar things happen in the US industry. Charles Perrow treats the Davis-Besse near-disaster in a fair amount of detail; link. Descriptions of the Davis-Besse nuclear incident can be found herehere, here, and here.
Conflict of interest
Shortly after the Fukushima accident, Japan’s Yomiuri Shimbun reported that thirteen former officials of government agencies that regulate energy companies were currently working for TEPCO or other power firms. Another practice, known as amaagari, “ascent to heaven,” spins the revolving door in the opposite direction. Here, the nuclear industry sends retired nuclear utility officials to government agencies overseeing the nuclear industry. Again, ferreting out safety problems is not a high priority.
Punishment of whistle-blowers
In 2000, Kei Sugaoka, a nuclear inspector working for GE at Fukushima Daiichi, noticed a crack in a reactor’s steam dryer, which extracts excess moisture to prevent harm to the turbine. TEPCO directed Sugaoka to cover up the evidence. Eventually, Sugaoka notified government regulators of the problem. They ordered TEPCO to handle the matter on its own. Sugaoka was fired. (47)
There is a similar story in the Davis-Besse plant history.

Factors that interfere with effective regulation

In summary: there appear to be several structural factors that make nuclear regulation less effective than it needs to be.

First is the fact of the political power and influence of the nuclear industry itself. This was a major factor in the background of the Chernobyl disaster as well, where generals and party officials pushed incessantly for rapid completion of reactors; Serhii Plokhy, Chernobyl: The History of a Nuclear Catastrophe. Lochbaum and his collaborators demonstrate the power that TEPCO had in shaping the regulations under which it built the Fukushima complex, including the assumptions that were incorporated about earthquake risk and tsunami risk. Charles Perrow demonstrates a comparable ability by the nuclear industry in the United States to influence the rules and procedures that govern their use of nuclear power as well (link). This influence permits the owners of nuclear power plants to influence the content of regulation as well as the systems of inspection and oversight that the agency adopts.

A related factor is the set of influences and lobbying points that come from the needs of the economy and the production pressures of the energy industry. (Interestingly enough, this was also a major influence on Soviet decision-making in choosing the graphite-moderated light water reactor for use at Chernobyl and numerous other plants in the 1960s; Serhii Plokhy, Chernobyl: The History of a Nuclear Catastrophe.)

Third is the fact emphasized by Charles Perrow that the NRC is primarily governed by Congress, and legislators are themselves vulnerable to the pressures and blandishments of the industry and demands for a low-regulation business environment. This makes it difficult for the NRC to carry out its role as independent guarantor of the health and safety of the public. Here is Perrow's description of the problem in The Next Catastrophe: Reducing Our Vulnerabilities to Natural, Industrial, and Terrorist Disasters (quoting Lochbaum from a 2004 Union of Concerned Scientists report):
With utilities profits falling when the NRC got tough after the Time story, the industry not only argued that excessive regulation was the problem, it did something about what it perceived as harassment. The industry used the Senate subcommittee that controls the agency’s budget, headed by a pro-nuclear Republican senator from New Mexico, Pete Domenici. Using the committee’s funds, he commissioned a special study by a consulting group that was used by the nuclear industry. It recommended cutting back on the agency’s budget and size. Using the consultant’s report, Domenici “declared that the NRC could get by just fine with a $90 million budget cut, 700 fewer employees, and a greatly reduced inspection effort.” (italics supplied) The beefed-up inspections ended soon after the threat of budget cuts for the agency. (Mangels 2003) And the possibility for public comment was also curtailed, just for good measure. Public participation in safety issues once was responsible for several important changes in NRC regulations, says David Lochbaum, a nuclear safety engineer with the Union of Concerned Scientists, but in 2004, the NRC, bowed to industry pressure and virtually eliminated public participation. (Lochbaum 2004) As Lochbaum told reporter Mangels, “The NRC is as good a regulator as Congress permits it to be. Right now, Congress doesn’t want a good regulator.”  (The Next Catastrophe, kl 2799)
A fourth important factor is a pervasive complacency within the professional nuclear community about the inherent safety of nuclear power. This is a factor mentioned by Lochbaum:
Although the accident involved a failure of technology, even more worrisome was the role of the worldwide nuclear establishment: the close-knit culture that has championed nuclear energy—politically, economically, socially—while refusing to acknowledge and reduce the risks that accompany its operation. Time and again, warning signs were ignored and near misses with calamity written off. (kl 87)
This is what we might call an ideological or cultural factor, in that it describes a mental framework for thinking about the technology and the public. It is very real factor in decision-making, both within the industry and in the regulatory world. Senior nuclear engineering experts at major research universities seem to share the view that the public "fear" of nuclear power is entirely misplaced, given the safety record of the industry. They believe the technical problems of nuclear power generation have been solved, and that a rational society would embrace nuclear power without anxiety. For rebuttal to this complacency, see Rose and Sweeting's report in the Bulletin of the Atomic Scientists, "How safe is nuclear power? A statistical study suggests less than expected" (link). Here is the abstract to their paper:
After the Fukushima disaster, the authors analyzed all past core-melt accidents and estimated a failure rate of 1 per 3704 reactor years. This rate indicates that more than one such accident could occur somewhere in the world within the next decade. The authors also analyzed the role that learning from past accidents can play over time. This analysis showed few or no learning effects occurring, depending on the database used. Because the International Atomic Energy Agency (IAEA) has no publicly available list of nuclear accidents, the authors used data compiled by the Guardian newspaper and the energy researcher Benjamin Sovacool. The results suggest that there are likely to be more severe nuclear accidents than have been expected and support Charles Perrow’s “normal accidents” theory that nuclear power reactors cannot be operated without major accidents. However, a more detailed analysis of nuclear accident probabilities needs more transparency from the IAEA. Public support for nuclear power cannot currently be based on full knowledge simply because important information is not available.
Lee Clarke's book on planning for disaster on the basis of unrealistic models and simulations is relevant here. In Mission Improbable: Using Fantasy Documents to Tame Disaster Clarke argues that much of the planning currently in place for largescale disasters depends upon models, simulations, and scenario-building tools in which we should have very little confidence.

The complacency about nuclear safety mentioned here makes safety regulation more difficult and, paradoxically, makes the safe use of nuclear power more unlikely. Only when the risks are confronted with complete transparency and honesty will it be possible to design regulatory systems that do an acceptable job of ensuring the safety and health of the public.

In short, Lochbaum and his co-authors seem to provide evidence for the conclusion that the NRC is not in a position to perform its primary function: to establish a rational and scientifically well grounded set of standards for safe reactor design and operation. Further, its ability to enforce through inspection seems impaired as well by the power and influence the nuclear industry can deploy through Congress to resist its regulatory efforts. Good expert knowledge is canvassed through the NRC's processes; but the policy recommendations that flow from this scientific analysis are all too often short-circuited by the ability of the industry to fend off new regulatory requirements. Lochbaum's comment quoted by Perrow above seems all too true: “The NRC is as good a regulator as Congress permits it to be. Right now, Congress doesn’t want a good regulator.” 

It is very interesting to read the transcript of a 2014 hearing of the Senate Committee on Environment and Public Works titled "NRC'S IMPLEMENTATION OF THE FUKUSHIMA NEAR-TERM TASK FORCE RECOMMENDATIONS AND OTHER ACTIONS TO ENHANCE AND MAINTAIN NUCLEAR SAFETY" (link). Senator Barbara Boxer, California Democrat and chair of the committee, opened the meeting with these words:
Although Chairman Macfarlane said, when she announced her resignation, she had assured that ‘‘the agency implemented lessons learned from the tragic accident at Fukushima.’’ She said, ‘‘the American people can be confident that such an accident will never take place here.’’

I say the reality is not a single one of the 12 key safety recommendations made by the Fukushima Near-Term Task Force has been implemented. Some reactor operators are still not in compliance with the safety requirements that were in place before the Fukushima disaster. The NRC has only completed its own action 4 of the 12 task force recommendations.
This is an alarming assessment, and one that is entirely in accord with the observations made by Lochbaum above.

No comments:

Post a Comment